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Abstract Inverted repeats occur nonrandomly in the DNA of most organisms. Stem-loops and cruciforms can 
form from inverted repeats. Such structures have been detected in pro- and eukaryotes. They may affect the 
supercoiling degree of the DNA, the positioning of nucleosomes, the formation of other secondary structures of DNA, or 
directly interact with proteins. Inverted repeats, stem-loops, and cruciforms are present at the replication origins of 
phage, plasmids, mitochondria, eukaryotic viruses, and mammalian cells. Experiments with anti-cruciform antibodies 
suggest that formation and stabilization of cruciforms at particular mammalian origins may be associated with initiation 
of DNA replication. Many proteins have been shown to interact with cruciforms, recognizing features like DNA 
crossovers, four-way junctions, and curvedibent DNA of specific angles. A human cruciform binding protein (CBP) 
displays a novel type of interaction with cruciforms and may be linked to initiation of DNA replication. o 1996 Wiley-Liss, Inc. 
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The double helical structure of DNA [Watson 
and Crick, 19531 now includes various conforma- 
tional permutations of this molecule. “DNA 
structure” or “secondary structure of DNA” is a 
common term for many different-mostly 
double-stranded-DNA forms, of which the only 
common denominator is that they deviate from 
a canonical B-form DNA. These forms include 
intrinsic local variations, for example, changes 
in twist angle, a stably curved DNA, A-form 
DNA; inducible local and global secondary struc- 
tures, e.g., melting, Z-form DNA, cruciforms, 
triplex DNA, superhelices, loops, the recently 
described slipped-stranded DNA (s-DNA) [Pear- 
son and Sinden, 19961; and covalent modifica- 
tions of DNA, which also may affect its structure 
[for comprehensive reviews, see Cozzarelli and 
Wang, 1990; Sinden, 19941. These variant struc- 
tures can influence the interaction of DNA with 
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proteins and consequently stimulate or repress 
processes that are governed by proteins such as 
transcription, repair, recombination or replica- 
tion. One good example is supercoiling, which is 
known to regulate genetic expression in prokary- 
otes [Drlica, 1984; Pruss and Drlica, 19891 and 
eukaryotes [Weintrauh and Groudine, 1976; 
Weintraub et al., 1986; Esposito and Sinden, 
1988; Freeman and Garrard, 19921. Therefore, 
DNA structure may possess regulatory potential 
on protein binding and, thus, on protein func- 
tion. 

Inverted repeat (IR) sequences are a common 
feature of prokaryotic and eukaryotic control 
regions, including replication origins. They have 
been shown to be functionally important for the 
initiation of DNA replication in plasmids, bacte- 
ria, eukaryotic viruses, and mammalian cells. 
IRs have the potential to form cruciform struc- 
tures through intrastrand base pairing and un- 
der conditions of torsional strain on the DNA. 
Cruciform formation in vivo has been demon- 
strated in prokaryotes and in mammalian cells. 
Here, we present a discussion of IRs, their struc- 
tural variations and possible biological roles of 
cruciform structures with an emphasis on initia- 
tion of mammalian DNA replication. 
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STRUCTURAL CONSIDERATIONS 
Occurrence and Significance of IRs 

Inverted repeat, or palindromic sequences oc- 
cur widely in the chromosomal DNA of many 
prokaryotes and eukaryotes such as plants [Baze- 
toux et al., 19781, yeast [Klein and Welch, 19801, 
Neurosporu [Krumlauf and Marzluf, 19801, Phy- 
sarum [Hardman and Jack, 19771, Drosophila 
[Wilson and Thomas, 1974; Schmid et al., 19751, 
mouse [Cech and Pardue, 1975; Cech and Hearst 
19751, Xenopus, and human [Wilson and Tho- 
mas, 1974; Dott et al., 19761. In the genome of 
many eukaryotes, IRs are distributed in a non- 
random fashion [Klein and Welch, 1980, and 
references therein]. IRs have been associated 
with regulation of gene expression in prokary- 
otes [Horwitz, 19891 and eukaryotes [Shuster et 
al., 1986; Greenberg et al., 1987; McMurray et 
al., 1991; Spiro et al., 19931, termination of 
transcription and attenuation in prokaryotes 
[Rosenberg and Court, 19791. Additionally, IRs 
are commonly associated with replication origin 
sequences of prokaryotic [Zyskind et al., 1983; 
Hiasa et al., 19901, viral [Muller and Fitch, 
19821, eukaryotic [Tschumper and Carbon, 1982; 
Campbell, 19861, and mammalian organisms 
[Hand, 1978; Zannis-Hadjopoulos et al., 1984; 
Zannis-Hadjopoulos et al., 1985; Landry and 
Zannis-Hadjopoulos, 1991; Boulikas, 19931, as 
well as amplified genes [Fried et al., 19913. The 
occurrence of IRs at control regions, like promot- 
ers, terminators and replication origins, sug- 
gests a regulatory role. IRs have the potential to  
form cruciform (stem-loop or hairpin) struc- 
tures [Platt, 19551. However, not all palin- 
dromes function necessarily as cruciforms. Many 
remain in the linear state and may act as bind- 
ing sites for protein dimers. Others exert their 
function only at the RNA level, for example, as 
RNA-hairpins at terminators or attenuators. 
However, there is accumulating evidence that, 
in several processes, palindromes may have func- 
tional significance also as cruciforms. 

Conditions and Structural Effects of 
Cruciform Extrusion 

A cruciform is an inducible four-branched 
DNA secondary structure that may form by 
intra-molecular base-pairing of the two comple- 
mentary strands under appropriate conditions. 
Consider, for example, a circular covalently 
closed DNA molecule, into which torsional ten- 
sion is introduced by breaking and unwinding 

the two strands, e.g., by the action of gyrase and 
ATP. In order to  partially compensate for this 
stress, the molecule adopts a negative superheli- 
cal conformation, equivalent to a change in 
writhe. However, this negatively supercoiled 
DNA still has less helical turns than the same 
molecule would have if it were relaxed, i.e., the 
molecule is “untwisted” [Boles et al., 19901. 
Deformation of either the writhe or the twist of 
a DNA molecule are energetically unfavorable. 
Therefore, a supercoiled DNA molecule has a 
higher free energy compared to its relaxed iso- 
mer. Beyond an energy threshold, the molecule 
collapses at  a site, forming cruciforms at IRs by 
intrastrand base pairing [Hsieh and Wang, 1975; 
Lilley, 1980; Mizuuchi et al., 1982; reviewed in 
Lilley, 19891 or other specific local DNA second- 
ary structures, depending on their nucleotide 
sequence [Sinden, 19941. 

The local formation of these structures con- 
tributes a net twist change that brings about a 
further relaxation of the superhelical stress. 
Since cruciforms relax negative supercoiling, 
they effect a reduction of the free energy of the 
molecule and are, therefore, thermodynamically 
favorable in superhelical domains. Once formed, 
cruciforms are relatively stable (metastable), 
even in nicked, or linear, DNAs [Mizuuchi et al., 
1982; Bell et al., 1991; Hyrien, 19891. 

Mechanisms of Cruciform Formation 

The formation of a cruciform is dependent on 
dyad symmetrical arrangement of the bases to 
permit stem formation. The stem extrudes as an 
intra-strand B-form helix [Sinden, 19941. Two 
major mechanisms of transition from linear du- 
plex to cruciform structure have been proposed 
that differ in salt dependent, effect of tempera- 
ture and magnitude of activation energy [re- 
viewed in Lilley, 1989; Murchie et al., 19921. 
The S type ( S  refers to  Salt-dependent), which 
has been observed in buffers approximating 
physiological ionic strength, is dependent upon 
supercoiling, temperature, ionic conditions, and 
the divalent cation [Singleton, 1983; Sinden and 
Pettijohn, 1984; Sullivan and Lilley, 19871. Fur- 
thermore, the base composition at the center of 
the IR has a significant influence on the forma- 
tion of a cruciform [Murchie and Lilley, 1987; 
Zheng and Sinden, 19881. The S-type of transi- 
tion commences with a small unwound state at  
the center of the inverted repeat, followed by 
intra-strand nucleation, giving rise to a protocru- 
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ciform, which proceeds by branch migration to a 
fully extruded cruciform. 

The other mechanism is the C-type, where C 
refers to ColE1, after the sequence in which this 
mechanism was first observed [Lilley, 1985; Mur- 
chie and Lilley, 19871. This extrusion mecha- 
nism takes place in solutions lacking salt via a 
large unwound bubble in an AT-rich region dis- 
tal to the IR. The bubble, initiated at this distal 
sequence, travels along the DNA strands, un- 
winds the first arm of the inverted repeat and, 
as the other arm also becomes unwound, intra- 
strand base pairing occurs leadicg to cruciform 
formation. AT-rich sequences distal to the IR 
are requisite to the C-type of transition. C-type 
transitions are independent of the sequence of 
the IR, but are completely dependent upon se- 
quences located in cis. 

Cruciform Structure: Geometry of Helices 
and Strands 

Cruciforms have two major structural charac- 
teristics, the four-way DNA junction and the 
stems containing single-stranded loops. Struc- 
tural analysis of four-way DNA junctions have 
been modeled on small stable synthetic oligo- 
nucleotides [reviewed by Lilley and Clegg, 19931. 
The structure of the junction depends critically 
on the type and amount of counterion used in 
the solutions [Duckett et al., 19901. Using stable 
junctions, it was found by several methods that, 
in the presence of Mg2+: (1) four helices become 
pairwise colinear, adopting a compact, twofold 
symmetric, X-like shape, i.e., with angles sub- 
tended by the helix pairs of -120" and 60" 
[Duckett et al., 1988; Churchill et al., 19881; (2) 
the two colinear helix pairs are in a right- 
handed conformation [Murchie et al., 19891; (3) 
partner choice (isomerization) of helices for co- 
linear arrangement depends critically on the 
DNA sequence, mainly at the junction, which 
thus determines the distribution of the stereoiso- 
mers [Chen et al., 1988; Duckett and Lilley, 
19911; (4) the most likely isomer is one in which 
the continuous strands display antiparallel polar- 
ity, with the consequence that the exchanging 
strands are in a noncrossed arrangement [Kim- 
ball et al., 1990; Murchie et al., 19911; and (5) 
the strands at the junction fold in a way that 
allows all bases to be paired and stacked [Wem- 
mer et al., 19851. In the absence of Mg2+, and at 
low-salt concentrations ( < 50 mM NaCl), the 
structure of a four-way junction is most likely in 
an extended, square-planar (or slightly pyrami- 

dal) [cf. von Kitzing et al., 19901, fourfold sym- 
metric conformation, as opposed to a tetrahe- 
dron [Clegg et al., 1992, 1994; Cooper and 
Hagerman, 1987, 19891, displaying unstacking 
of base pairs at the junction [Duckett et al., 
19901. In the absence of Mg2', but at high con- 
centrations of monovalent cations ( > 50 mM 
NaCl), the structure shares compactness with 
the Mg2+ species but lacks perfect twofold sym- 
metry and still retains single-strand bases at the 
junction [Duckett et al., 19901. Since the intra- 
cellular concentration of Mg2+ is rather high 
(mM amounts) [Duckett et al., 19901, the most 
probable (protein-free) physiological conforma- 
tion of a cruciform may be the compact X- 
shaped structure, rather than an extended con- 
formation [Lilley and Clegg, 1993; Clegg et al., 
1992, 19941. In another model, the given struc- 
ture of a particular set of sequences does not 
have a stable steady-state structure [Eis and 
Millar, 19931, indicating that there is a certain 
amount of flexibility in four-way junctions 
[Petrillo et al., 19881. 

Cruciform Structure: Stem-Loops 

The tips of cruciform arms are sensitive to 
single-strand nucleases [Lilley, 1980; Panayota- 
tos and Wells, 1981; Sheflin and Kowalski, 1985; 
Frappier et al., 19891, indicating that they are in 
a single-stranded state. For IRs with no interven- 
ing sequence between the repeats, in the cruci- 
form conformation, the loops contain two to 
three unpaired bases [Scholten and Nordheim, 
1986; Furlong and Lilley, 19861. For other IRs, 
the loop size is dependent on the length of the 
intervening sequence. Hairpin loops probably 
involve base stacking [Blommers et al., 19891, 
nonwatson-Crick base pairing [Haasnoot et al., 
1986; Hirao et al., 19941 and, under certain 
conditions, extraloop bases [Zhou and Vogel, 
19931. 

It has been shown that hairpin loop conforma- 
tion and dynamics can be extremely sensitive to 
small base changes in the loop and adjacent 
stem sequences [Blommers et al., 1989; William- 
son and Boxer, 19891. Similarly, the presence of 
hairpin loops can affect the stem structure [Ger- 
mann et al., 19901. Hence, for cruciforms with 
short arms the presence of a hairpin loop may 
affect the overall conformation of the four-way 
junction [Petrillo et al., 19881. The presence of 
loops could impart certain stiffness to the DNA 
structure, which may be important for protein 
recognition of the target DNA as a cruciform 
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[Crothers and Fried, 1982; Hogan and Austin, 
1987; Travers, 19891, as opposed to similar struc- 
tures, e.g., Holliday junctions, or crossovers, 
points where two double helices intersect by the 
process of supercoiling, looping or folding around 
a nucleosome (see below). 

EVIDENCE FOR THE EXISTENCE OF 
CRUCIFORMS IN VlVO 

Unrestrained Supercoiling In vivo 

As previously mentioned, a cruciform struc- 
ture needs torsional tension, coming from unre- 
strained negative supercoils of sufficient den- 
sity, in order to form from an IR. The required 
superhelical density (T, expressed as an average 
number of supercoils per helical turn, may vary 
from one IR to another [Zheng and Sinden, 
19881. Most DNAs in their natural state are 
negatively supercoiled, including chromosomal 
and plasmid DNAs of bacteria and the DNA 
contained in mammalian cells [Sinden, 19941. In 
circular plasmids isolated from bacteria, a (T of 
-0.06 to -0.07 is generally observed [Zheng et 
al., 19911. However, this relatively high negative 
superhelical density is greatly reduced in vivo 
due to the association of the bacterial genome 
with histone-like proteins [Pettijohn and Pfen- 
ninger, 19801. Numerous methods have indi- 
cated that the in vivo superhelical density must 
lie between '0.025 and -0.05 [for discussion, 
see Zheng et al., 19911. These values may be too 
low for a significant cruciform formation in vivo. 
However, many factors, including ongoing tran- 
scription [Liu and Wang, 1987; Wu et al., 1988; 
Tsao et al., 1989; Dayn et al., 1992; Bowater et 
al., 1994133; growth conditions and stress [Hani- 
ford and Pulleyblank, 1985; McClellan et al., 
1990; Dayn et al., 19911; and topoisomerase I 
[McClellan et al., 1990; Zheng et al., 19911, may 
increase transiently the local superhelical den- 
sity to a critical level sufficient for formation of a 
cruciform. After their formation, cruciforms ef- 
ficiently resist reduction of torsional stress, since 
their reabsorption would require introduction 
of negative supercoils [Sinden et al., 19831. 

Circular genomes, e.g., of prokaryotes, are 
topologically closed, a property that is essential 
for supercoiling. Eukaryotic chromosomes, on 
the other hand, are believed to exist as long 
linear molecules wrapped around nucleosomes. 
However, DNA in mammals is also thought to 
be attached to the nuclear matrix Nogelstein et 
al., 19801, organized in closed topological do- 
mains. Because of the tight association of eukary- 

otic DNA with nucleosomes, however, virtually 
all supercoiling is restrained, so that, in essence, 
eukaryotic chromosomes should be tension free. 
Early attempts, which failed to detect unre- 
strained supercoiling in the bulk of DNA in 
eukaryotes, supported this general conclusion 
[Sinden et al., 19801. However, a localized stress 
could be generated if nucleosomes were rear- 
ranged or removed from a topologically closed 
chromosomal domain [Leonard and Patient, 
1991, and references cited therein]. In fact, re- 
cent evidence from yeast [Giaever and Wang, 
1988; Brill and Sternglanz, 1988; Osborne and 
Guarente, 19881, insect [Jupe et al., 19931, frog 
oocytes [Leonard and Patient, 19911 and mam- 
malian cells [Ljungman and Hanawalt, 19921 
indicates that there are regions of localized unre- 
strained negative supercoiling in eukaryotic 
chromosomes. In some of these systems, super- 
coiling is apparently not merely a consequence 
of the twin model of ongoing transcription [Liu 
and Wang, 19871 but is independent of active 
transcription [Jupe et al., 19931 or preceeds the 
latter and is barely affected by blocking transcrip- 
tion elongation [Leonard and Patient, 19911. 
These data indicate that, in spite of topoisomer- 
ase action, torsionally stressed topological do- 
mains do exist in eukaryotes and that localized 
supercoiling may be requisite for the progres- 
sion of cellular processes. 

Detection of Cruciforms In Vivo 

Early studies of cruciforms in mammalian 
cells led researchers to believe that these struc- 
tures either did not form in vivo or that they 
formed but were not stable [Cech and Pardue, 
19761. These studies, however, were at the reso- 
lution level of electron microscopy and would 
not have detected small cruciforms or cruci- 
forms stabilized by bound proteins. A further 
scepticism concerning the existence of cruci- 
forms in vivo, came from results showing that 
there may be significant kinetic barriers to the 
formation of cruciforms under physiological con- 
ditions [Courey and Wang, 19831 and that extru- 
sion was slow [Gellert et al., 19831. Studies 
involving several IRs, however, revealed that 
different sequences have different extrusion rates 
[Sinden and Pettijohn, 1984; Lilley, 19851. In 
vitro, cruciforms may be traced by virtue of 
their particular structure with several methods, 
including altered migration in native gels [Gough 
and Lilley, 19851; susceptibility of the single- 
stranded tips to S1 nuclease [Lilley, 1980; Pan- 
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ayotatos and Wells, 19811; resistance to DNase I 
digestion [Murchie et al., 19901; failure of restric- 
tion endonucleases to cut their cognate site, 
when it was placed into the loop region [Mizuu- 
chi et al., 19821; discontinuous migration of 
topoisomers resolved in 2D gels [Mizuuchi et al., 
19821; and electron microscopy studies [Mizuu- 
chi et al., 1982; Hsu, 19851. These approaches 
cannot be, or were not used for the detection of 
cruciforms in vivo. In the following, we present 
the evidence, indirect and direct, for the occur- 
rence of cruciforms in vivo, as detected by suit- 
able techniques. Indirect evidence is mainly of 
genetic nature, i.e., the observed genetic changes 
are consistent with cruciform formation in vivo. 
Direct evidence, on the other hand, relies on 
direct (chemical immunochemical, enzymatic) 
probing of cruciform structures in the cell or in 
vitro. (For a critical discussions of in vivo meth- 
ods, see Palecek [19911 and Sinden L19941.1 

The first evidence suggesting that cruciforms 
or DNA hairpins may exist in vivo was the 
observation that cloned IRs > 150 bp are geneti- 
cally unstable in plasmids in E. coli [Collins, 
1981; Lilley, 1980; Mizuuchi et al., 1982; Leach 
and Stahl, 1983; Shurvinton et al., 1987; Wil- 
liams and Muller, 1987; Muller et al., 1988; 
Sinden et al., 19911. Those IRs may be elimi- 
nated by recombinational mechanisms, or by 
deletions due to slipped, mismatched alignment 
during DNA replication [Trinh and Sinden, 1991; 
Sinden, 1994; Leach, 19941. The instability of 
short and long IRs does not hold true for eukary- 
otic organisms; both long and short IRs can be 
stably cloned in yeast [Klein and Welch, 1980; 
Weller et al., 1985; Henderson and Petes, 1993; 
Ruskin and Fink, 1993; Hayashi et al., 19931, 
insects [Schmid et al., 19751, or mammals mil-  
son and Thomas, 19741. Genetic evidence for 
stable stem-loop structures in eukaryotic cells 
comes from several reports aimed at  the study of 
repair and recombination in yeast [Nag et al., 
1989; Nag and Petes, 19911 and mammals 
[Bollag et al., 19921, indicating that in these 
organisms these structures are neither repaired 
by nucleolytic enzymes nor destroyed. Second, 
based on the observation that the magnitude of 
supercoiling in E. coli is stringently maintained 
on a constant level, Haniford and Pulleyblank 
r19851 provided an elegant demonstration of in 
vivo formation of cruciforms, by analysing the 
topoisomer pattern of a plasmid capable of cruci- 
form extrusion. Two, rather than one gaussian 
distribution, were apparent when a subpopula- 

tion of the plasmid topoisomers carried a cruci- 
form; this was due to an intracellularly in- 
creased superhelical density in these 
topoisomers, consistent with a compensation for 
the relaxation brought about by the cruciform 
extrusion. Third, Honvitz and Loeb [ 19881 con- 
cluded the formation of a cruciform in vivo by 
showing that transcription was inhibited under 
conditions of (high) intracellular negative super- 
coiling in E. coli, when an IR was cloned in the 
promoter of a tetracycline gene. Fourth, muta- 
tions at  IRs which disrupt a putative cruciform 
structure but are functionally compensated for 
by a second mutation within the IR reconstitut- 
ing the integrity of the cruciform stems were 
also interpreted as indicative for formation of 
cruciforms in vivo at the CD8a enhancer in 
human T cells [Hanke et al., 19951. Fifth, forma- 
tion of the diagnostic loop structure was demon- 
strated by treatment of whole cells with single- 
strand selective chemical probes, e.g., OsO, 
[McClellan et al., 1990; Bowater et al., 1994al 
and haloacetaldehydes [Noirot et al., 1990; Dayn 
et al., 1991, 19921, indicating formation of cruci- 
forms in vivo. The loop structure was also probed 
in situ by single-strand-specific nucleases, which 
function at  physiological pH, e.g., P1 nuclease 
[Leonard and Patient, 1991; Hanke et al., 19951. 
Sixth, psoralen has been another useful agent 
for proving the existence of cruciforms in pro- 
karyotic [Zhenget al., 19911 and eukaryotic cells 
[Jupe et al., 19931, by locking the cruciform 
structure in vivo through interstrand cross- 
links [Sinden and Ussery, 19921. Seventh, forma- 
tion of a natural cruciform on a prokaryotic 
plasmid in vivo was convincingly demonstrated 
by specific cleavage of this cruciform at its junc- 
tion with intracellularly induced recombinant 
endonuclease I encoded by gene 3 of bacterio- 
phage T7 [Panayotatos and Fontain, 19871. Con- 
currently, the entire E.  coli chromosome was 
cleaved at numerous sites, indicating native cru- 
ciforms or cruciform-like structures throughout 
the genomic DNA in vivo. Eighth, another ap- 
proach involved the production of monoclonal 
antibodies directed to cruciform structures 
[Frappier et al., 1987, 19891. These antibodies 
recognize conformational determinants specific 
to DNA cruciforms and do not bind linear double 
stranded DNA, linear single-stranded DNA, 
single-stranded DNA containing a stem-loop 
structure or tRNA. Moreover, they do not pro- 
mote and/or induce the formation of cruciforms 
at IRs on linear DNA [Frappier et al., 1987, 
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19891. The binding site of these antibodies has 
been mapped to the four-way (elbow-like) junc- 
tion at the base of the cruciform [Frappier et al., 
1989; Steinmetzer et al., 19951. Using these 
antibodies, it was shown that cruciforms do 
exist within living mammalian (monkey and hu- 
man) cells, with an estimated frequency of 0.6 x 
lo5 to 3 x lo5 cruciforms per cell [Ward et al., 
19901 and are localized in discrete regions within 
the nucleus at the onset of S phase (see below). 
The reactivity of the anti-cruciform antibodies 
with distinct subnuclear sites confined to a cer- 
tain time of the cell cycle phase indicates convinc- 
ingly that cruciforms are not artificially induced 
by antibody binding. 

The extrusion of cruciforms in vivo is likely to 
be primarily via the S-type (see above) [Zheng et 
al., 19911. By contrast, standard C-type forma- 
tion of cruciforms is not likely to occur in the 
cell, due to the rather high physiological ion 
concentration, which would strongly suppress 
the required large-scale opening of IR-flanking 
regions even in highly supercoiled DNA [Bowa- 
ter e i  al., 1994al. The extrusion of an IR pro- 
gressing in vitro by C-type mechanism at low 
salt most probably changes in vivo to the S-type 
pathway that does not depend on opening of the 
flanking DNA [Sullivan and Lilley, 19881. On 
the other hand, DNA with the propensity to 
undergo easy denaturation like, for example, 
DUES (DNA unwinding elements) at origins of 
replications, also may be opened and/or stabi- 
lized in the single-strand state under intracellu- 
lar conditions with the aid of proteins; this event 
may then elicit the formation of a cruciform in a 
nearby IR by a C-type mechanism. 

SIGNIFICANCE OF STEM-LOOPS AND 
CRUCIFORMS FOR INITIATION OF 

DNA REPLICATION 

The extent of supercoiling has been shown to 
affect the regulation of DNA replication in E. 
coli [von Freiesleben and Rasmussen, 19921. 
Since cruciform extrusion causes an effective 
relaxation in DNA [White and Bauer, 19871, 
cruciforms may indirectly influence the onset 
and regulation of replication by affecting the 
level of superhelicity, and thus the binding of 
specific protein factors [Horwitz, 19891. In fact, 
supercoiling is known to affect specific binding 
of regulatory proteins for transcription, recom- 
bination, and replication [Wang and Liu, 1990; 
Cozzarelli and Wang, 19901. 

Another instance, in which cruciforms may 
influence chromatin architecture and, in conse- 
quence, regulation of many processes on eukary- 
otic DNA, is in their interaction with nucleo- 
somes. Nucleosomes interfere with the binding 
of initiation factors to promoters [Workman et 
al., 19911 and origins of replication [Cheng and 
Kelly, 1989; Simpson, 19901. A yeast A R S  placed 
within the nucleosome has severely reduced 
function, compared to its normal location in the 
linker region [Simpson, 19901. In accordance, 
the SV40 origin of replication is nucleosome free 
[Jakobovits et al., 1980; Saragosti et al., 19801, a 
condition that favors initiation of replication 
[Cheng and Kelly, 19891. Histones and/or 
nucleosomes bind poorly to inverted repeats 
[Weintraub, 19831, stem-loop [Nickol and Mar- 
tin, 19831 or cruciform DNA structures [Nobile 
et al., 1986; Battistoni et al., 1988; Kotani and 
Kmiec, 1994; van Holde and Zlatanova, 19941, 
and it is likely that cruciform structures exist in 
either the spacer region between nucleosomes 
or orthogonal to the nucleosome surface [Nickol 
and Martin, 19831. Thus, cruciforms at origins 
may exert a biological effect on replication either 
directly, by exposing nucleosome-free DNA and 
making it accessible to DNA binding proteins, or 
indirectly, by phasing nucleosomes in a replica- 
tion-permissive array. 

Although it has been unclear whether the 
replication of complex genomes initiates at  
unique and specific sites (origins), over the past 
few years the existence of specific origins has 
been well documented [DePamphilis, 19931. 
However, according to the “Jesuit model” of 
replication initiation [DePamphilis, 19931 , repli- 
cation can start at any site that is easily un- 
wound. Reopening of chromatin over a broad 
DNA region may induce a strong torsional ten- 
sion in this domain due to unrestrained super- 
coiling (cf. above). This might lead to melting of 
several sites of low helical stability, provoking 
initiation at many “origins of bidirectional repli- 
cation” (OBR). In fact, some complex origins 
may display an initiation zone extending over 
several kilobases, in addition to a predominant 
site of initiation. Thus, extrusion of cruciforms 
near origins of replication may be a further 
mechanism of cruciform action, by which absorp- 
tion of excess torsional stress will suppress open- 
ing of “false” DNA sites and restrict or favor 
firing at the “right” OBR. 

Finally, cruciforms may also participate di- 
rectly in processes like transcription and replica- 
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tion by being themselves components of a nucleo- 
protein complex [Gierer, 1966; Bollum, 1975; 
Zannis-Hadjopoulos et al., 19881. In the follow- 
ing sections, we summarize the evidence for 
cruciforms as active elements in DNA replica- 
tion. 

IMPLICATION OF STEM-LOOPS AND 
CRUCIFORMS IN INITIATION OF 

DNA REPLICATION 
Pro karyotes 

ss phage 4x174. Primosome assembly on 
4x174 ssDNA requires stem-loop structures. 
This requirement can be satisfied by many differ- 
ent inverted repeat sequences regardless of the 
nucleotide sequence [Abarzua et al., 1984; Green- 
baum and Marians, 1984; Soeller et al., 1984; 
Masai et al., 19901. The E. coli replication factor 
PriA (formerly known as factor Y or protein n) is 
one of several proteins that constitute a multien- 
zyme complex called the primosome, which func- 
tions to prime complementary strand synthesis 
during +X174 DNA replication [reviewed in Mar- 
ians, 19921. The first step in primosome assem- 
bly is the structure-specific recognition of a stem- 
loop by PriA [Soeller et al., 19841. Similar 
primosome assembly mechanisms exist for many 
broad-host range plasmids [Miao et al., 19931. 

ss phage 64 .  The origins of phage G4 and 
the closely related a3, St-1, and +K phages each 
contain a region of approximately 139 bases 
with three inverted repeats, which are required 
for priming [Lambert et al., 19861. Insertional 
and substitutional mutations that preserve the 
secondary structures of the stem-loops also pre- 
serve the replication activity, indicating that 
structure, rather than sequence, is important 
for priming [Hiasa et al., 19891. In fact, both the 
secondary structure and spacing of stem-loops 
of the bacteriophage G4 ori have been shown to 
be essential for the initiation of replication of 
the plasmid [Hiasa et al., 19901. Following infec- 
tion of the phage, the dnaG primase protein 
binds to the stem-loop of one of the IRs; this step 
is requisite for the synthesis of an RNA primer 
for the initiation of replication. 

ds plasmid R1162. Initiation of replication 
of the broad host range plasmid R1162 occurs at 
two points on the double stranded molecule that 
are on opposite strands, each being at the out- 
side edge of a 40 bp IR with a 40-bp intervening 
sequence [Lin and Meyer, 19871. DNA synthesis 
is convergent and directed into the IR. Initiation 
occurs in a highly conserved 10-bp sequence 

present, in opposite orientation, at the outer 
edge of the IR. Varying the composition or the 
size of the intervening sequence by insertion or 
deletion had no effect on replication activity. 
However, reorienting the IRs to be direct re- 
peats prevented initiation. Deletion of either of 
the repeats also abolished initiation, suggesting 
that initiation at one site is dependent on initia- 
tion at  the other. A probable mechanism for the 
cooperative interaction of the two initiation sites 
might be the formation of cruciforms; the cruci- 
form structure would be recognized by the repli- 
cation machinery, and bidirectional (continuous 
only or semidiscontinuous) replication occurs 
[Lin and Meyer, 19871. The single-stranded plas- 
mid RSFlOlO (related or identical to R1162) 
[Lin and Meyer, 19871 also requires an IR at its 
origin of replication for activity. It was recently 
demonstrated that both intrastrand base pair- 
ing and the base sequence were major determi- 
nants of replication activity [Miao et al., 19931. 

ds plasmid pT181. The replication origin of 
the Staphylococcus aureus pT181 plasmid con- 
tains three short IRs [Wang et al., 1992, 19931. 
It has been demonstrated that the initiation of 
DNA replication of the pT181 plasmid involves 
extrusion of one of the IRs from supercoiled 
double-stranded DNA as a cruciform in vivo 
[Noirot et al., 19901. The plasmid-encoded initia- 
tor protein, RepC, binds to the origin region of 
either single- or double-stranded DNA and ap- 
parently facilitates and stabilizes the formation 
of the cruciform. After binding, the RepC pro- 
tein introduces a nick in the cruciform DNA at 
the center of the IR, and the 3'-hydroxyl group 
at the nick serves as a primer for the initiation 
of dsDNA replication [Gennaro et al., 19891. 

Organelles: Mitochondria1 Origins of Replication 

The initiation of replication on the super- 
coiled circular double-stranded genome of ani- 
mal cell mitochondria involves stem-loop DNA 
structures [reviewed in Clayton, 1982, 19921. 
There are two separately located origins of DNA 
replication, the H-strand (OH)  and the L-strand 
(0,) origins. O H  initiates before OL. The OH 
origin is within the D-loop region. The D-loop is 
a region that consists of a three-stranded struc- 
ture. The third strand of the D-loop is a nascent 
H strand (initiation sequence) with its 5' end 
located at O H  [Chang et al., 19851; its synthesis 
is likely directed by RNA priming and the initia- 
tion sequences vary from 520 to 690 nucleotides 
[Bogenhagen and Clayton, 19781. These three- 
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stranded D-loops are unstable and have a high 
turnover rate (70 min) [Bogenhagen and Clay- 
ton, 19781. The 3’ end of the D-loop strand 
serves as the primer for leading H-strand synthe- 
sis, which is continuous. 

OL is only activated after H-strand synthesis 
has proceeded beyond it, thus leaving it exposed 
as a single-stranded template. OL has relatively 
small sequence requirements for activity, but it 
is thought to be structurally functional [Hixson 
et al., 19861. OL consists of a short, highly con- 
served, 30-bp IR with a T-rich loop; this IR has 
the potential to form a stem-loop structure 
[Crews et al., 1979; Gillum and Clayton, 19791. 
Development of a mtDNA in vitro replication 
assay demonstrated that mitochondrial pri- 
mase, a ribonucleoprotein, was able to structur- 
ally recognize the stem-loop of OL, initiate RNA 
priming and subsequent DNA synthesis [Wong 
and Clayton, 1985a,bl. RNA priming occurs 
within the loop, and DNA synthesis begins at  
the base of the stem. It is likely that replication 
ofthe mitochondrial genome of yeasts are accom- 
plished by similar mechanisms [de Zamaroczy et 
al., 19811. 

Eukaryotic Viruses 

IRs have been shown to be important for the 
initiation of DNA replication in viruses of eu- 
karyotes [Frisque et al., 1983; Deb et al., 198613; 
Prives et al., 1987; Stow and McMonagle, 1983; 
Weller et al., 1985; Reisman et al., 1985; Loch- 
son and Galloway, 19861, some of which have 
been used as models for eukaryotic DNA replica- 
tion. 

Simian virus 40 (SV40) contains two palin- 
dromes in its origin. Both are required for the 
initiation reaction, and one of them, the “early 
palindrome,” melts upon formation of the preini- 
tiation complex [Borowiec and Hurwitz, 19881. 
Previous EM studies suggested the presence of a 
cruciform structure in intracellular SV40 DNA 
[Hsu, 19851, but more recent studies indicated 
that neither SV40 palindrome is extruded into a 
cruciform [Kim and Kang, 19891. 

The origin regions in the herpes simplex virus 
(HSV) genome, oriL1, oriLz, and oris, all contain 
AT-rich palindromes with the capacity to form 
cruciforms [Weller et al., 1985; Lochson and 
Galloway, 19861. However, the oris palindrome 
seems to be required in the linear, rather than 
cruciform conformation, in the initiation of HSV 
replication [Lochson and Galloway, 1988; Deb 
and Doelberg, 19881. 

Epstein-Barr virus (EBV) has been an attrac- 
tive model for cellular DNA replication, because 
it replicates at the same rate as cellular chromo- 
somes, is restricted to S-phase and maintains a 
low number of genome copies per cell through 
the action of the plasmid maintenance replica- 
tion origin, oriP Bates and Guan, 19911. Recent 
evidence indicates that both the family of re- 
peats (FR) and the dyad symmetry (DS) element 
of oriP, are sensitive to single-strand nucleases 
[Williams and Kowalski, 19931. In duplex DNA, 
the structure of the DS element is a large single- 
stranded bubble containing a stem-loop formed 
by the 65-bp dyad, while the FR element is in 
the cruciform conformation. These investiga- 
tors concluded that the intrinsic ability of the 
oriP elements to form alternative structures 
may be important in the initiation process, spe- 
cifically to facilitate the access of the replication 
machinery to the parental DNA strands. The 
unwound single-strand bubble containing a base- 
paired hairpin is reminiscent of the ssi signals of 
plasmids and phages [reviewed in Marians, 
19921. It is tempting to speculate that the un- 
wound oriP is recognized by replication factors 
in a similar fashion as the ssi signals. 

Eukaryotes 

An important question in cellular and molecu- 
lar biology is how the cell limits DNA synthesis 
to  one round per cell cycle. The mechanism that 
inhibits re-initiation is not known, although 
chromatin conformation [Hewish, 1976; Solo- 
mon and Varshavsky, 1987; Dhar et al., 1989; 
Forrester et al., 19901, DNA methylation [Wil- 
son, 1987; Leonhardt et al., 19921, chromatid 
pairing [Roberts and Weintraub, 1986, 19881, 
and nuclear membrane permeability [Laskey et 
al., 1989; Len0 et al., 19921 may be involved in 
the process. 

Replication origins, or replicators, the specific 
sequences that control the initiation of DNA 
replication, are also poorly defined in mamma- 
lian cells [DePamphilis, 1993; Stillman, 19931. 
Unlike the simple genomes of prokaryotes and 
viruses that possess a single origin of replica- 
tion, the multi-chromosome mammalian ge- 
nome is replicated from multiple origins. With 
this increased genomic complexity one might 
also expect more complex or more numerous 
modes of regulation at the level of initiation 
[reviewed by Huberman, 19951. 
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Structures associated with eukaryotic 
replication origins. Although the existence 
of specific consensus sequences in mammalian 
cells is an evolving area of study, certain types of 
sequences and/or (potential) structures, e.g., 
curved DNA [reviewed in Hagerman, 1990, 
19921, DNA unwinding elements (DUES) [Na- 
tale et al., 1992, 19931, matrix attachment re- 
gions (MARS) [Boulikas, 19921, and inverted 
repeats (IRs) [Zannis-Hadjopoulos et al., 1984, 
1985, 1988; Landry and Zannis-Hadjopoulos, 
1991; Bell et al., 1991; Nielsen et al., 19941 are 
common to many replication origins of prokary- 
otic, lower eukaryotic, and mammalian organ- 
isms [Muller and Fitch, 1982; Campbell, 1986; 
DePamphilis, 19931. Some or all of them may 
constitute an origin and/or mediate the proper 
origin function and regulation in concert with 
the cell cycle. 

Mammalian early replicating origin en- 
riched sequences (ORS) and I&. Early rep- 
licating sequences enriched for replication ori- 
gins that are activated at the onset of S phase 
were isolated by extrusion of nascent strands 
[Zannis-Hadjopoulos et al., 19811 of replicating 
monkey (CV-1) cells synchronized at  the Gl/S- 
phase border [Kaufmann et al., 19851. The na- 
scent DNA, ranging in size from several hun- 
dred bp to approximately 2 kb, were cloned into 
pBR322 generating a library of cloned early 
replicating sequences. These sequences, by the 
nature of their isolation, should contain replica- 
tion origins at or near their center [Zannis- 
Hadjopoulos et al., 19831 and thus have been 
called origin enriched sequences (ors). 

The ors clones were found to be enriched for 
snap-back sequences, implying that some mam- 
malian origins of DNA replication contain palin- 
dromic (IR) sequences [Zannis-Hadjopoulos et 
al., 1984, 19851. This finding was later con- 
firmed by nucleotide sequence analysis of the 
ors fragments [Rao et al., 1990; Landry and 
Zannis-Hadjopoulos, 19911. Such analyses re- 
vealed that common to all the ors and other 
known replication origins (prokaryotic and vi- 
ral) is the presence of IRs, both perfect and 
imperfect, as well as AT-rich sequences [Zannis- 
Hadjopoulos et al., 1984; Rao et al., 1990; Lan- 
dry and Zannis-Hadjopoulos, 19911. The IRs are 
generally flanked by AT-rich regions [Rao et al., 
19901 that could facilitate C-type cruciform for- 
mation (see above). In addition, the ors se- 
quences were statistically enriched for perfect 
and near perfect matches of the yeast ARS con- 

sensus sequence [Palzkill and Newlon, 19881, 
scaffold attachment regions (SAR) of Drosophila 
[Gasser and Laemmli, 19861, and the CACCC 
transcriptional control region consensus [Di- 
erks et al., 19831. Other laboratories have subse- 
quently obtained by similar techniques, librar- 
ies of early-replicated DNAs from mammalian 
cells (human and avian) containing putative rep- 
lication origins. Those studies also revealed an 
enrichment of sequences containing IRs, AT- 
rich regions, SARs and transcriptional regula- 
tory elements [Razin et al., 1986; Triboli et al., 
1987; Dimitrova et al., 19931. 

The ors clones were examined for their ability 
to replicate autonomously upon transfection into 
CV-1, COS or HeLa cells [Frappier and Zannis- 
Hadjopoulos, 1987; Landry and Zannis-Hadjo- 
poulos, 19911. At least 17 of 35 ors clones tested 
were able to support autonomous replication, as 
assayed by the DpnI assay [Peden et al., 19801 or 
by semiconservative bromodeoxyuridine incorpo- 
ration. Four of the 17 autonomously replicating 
ors were also tested and found capable of initiat- 
ing replication in a HeLa cell-free in vitro DNA 
replication system [Pearson et al., 19911. In 
both the in vivo [Frappier and Zannis-Hadjopou- 
los, 19871 and in vitro [Pearson et a]., 19911 
assays, replication was dependent on the pres- 
ence of an ors insert, initiation was within the 
ors sequence, and synthesis was semiconserva- 
tive and bidirectional [Frappier and Hadjopou- 
los, 1987; Pearson et al., 19911. Both in vivo 
[Frappier and Zannis-Hadjopoulos, 19871 and in 
vitro [Pearson et al., 1994al initiation within 
the ors insert has been mapped by electron 
microscopy. 

Ors8 (483 bp in length; < 5 copies per haploid 
CV-1 genome) [Zannis-Hadjopoulos et al., 1985; 
Rao et al., 19901 (GenBank Accession No. 
M26221) is replicated in the early part of S 
phase [Zannis-Hadjopoulos et al., 19881. When 
present on plasmids, it replicates autonomously 
upon transfection into mammalian cells [Frap- 
pier and Zannis-Hadjopoulos, 19871 and in vitro 
[Pearson et al., 19911. The various landmarks of 
ors8 include, among other characteristics, an 
internal 44-bp imperfect IR sequence and an 
AT-rich sequence domain [Rao et al., 19901. 
Recently we demonstrated by deletion mutagen- 
esis that an internal portion (186 bp) of ors8 
containing the IR is essential for replication 
activity in vivo and in vitro [Todd et al., 19951. 
Certain deletions flanking the IR appear to en- 
hance the replication activity both in vitro and 
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in vivo, suggesting that there may be negative 
acting sequences inhibiting replication. Similar 
results have also been obtained with orsl2 [Pel- 
letier et al., in preparation]. Finally, orsl2, which 
associates with the nuclear matrix in a cell cycle 
dependent manner [Mah et al., 19931, has also 
been demonstrated to act as a bona fide replica- 
tion origin at its native chromosomal locus [Pel- 
letier et al., submitted]. 

Mammalian cells: effect of anti-cruci- 
form-DNA antibodies. Monoclonal antibod- 
ies (mAbs) have been produced with unique 
specificity to cruciform DNA structures [Frap- 
pier et al., 1987, 19891 (cf. above). Introduction 
of the anti-cruciform DNA mAbs into a perme- 
abilized cell system capable of carrying out DNA 
replication, resulted in a 2- to ll-fold enhance- 
ment of DNA synthesis and, particularly, an 
enhanced replication of known early replicating 
sequences such as ors8, DHFR and c-myc [Zan- 
nis-Hadjopoulos et al., 19881. This observation 
is consistent with stabilization by antibody of 
cruciforms near the origins of replication and 
facilitation of multiple initiations at these sites. 

Using the anti-cruciform DNA mAbs in the 
same system, Ward et al. [1990, 19911 were able 
to quantify the number of cruciform structures 
in living cells by fluorescent flow cytometry. A 
bimodal distribution of cruciforms was observed 
throughout the S phase, with their numbers at a 
maximum (estimated 3 x lo5 cruciforms per cell) 
at the G1/S boundary, and a second wave occur- 
ring at approximately 4 h into S phase, but at a 
lower level (estimated 0.6 x lo5 cruciforms per 
cell) than that observed at the G1/S boundary 
[Ward et al., 19901. The timing of these waves 
correlates with both the rates of maximal DNA 
synthesis [McAlear et al., 19891 and the relative 
enhancement of DNA synthesis by the mAb 
[Zannis-Hadjopoulos et al., 19881. There are no 
detectable cruciforms in G2/M nuclei [Ward et 
al., 19911. These data indicate that formation of 
cruciforms appears to be cell-cycle regulated. 
Consistent with this, Collins et al. [1977, 19821 
had found that although there were no S1 nucle- 
ase sensitive sites in nonproliferating cells, the 
number of such sites increased when the cells 
were stimulated to go from Go to GI and peaked 
at  the onset of S phase. As previously men- 
tioned, cruciforms are sensitive to single-strand- 
specific nucleases such as S1 [Lilley, 1980; Pan- 
ayotatos and Wells, 19811 and mung bean 
nuclease [Frappier et al., 19891 by virtue of their 
single-strandedness at  the tip of the stem-loops. 

In addition to these studies, there are several 
reports of different non-B DNA structures that 
appear to be dynamically regulated throughout 
the eukaryotic cell cycle, including triplex DNA 
[Burkholder et al., 19881, Z-DNA [Staiano-Coico 
et al., 19851, and single-stranded DNA [Klein et 
al., 1967; Tan and Lerner, 1972; Collins et al., 
1977; Conrad and Newlon, 19831. 

The above observations support the hypoth- 
esis that certain IRs may represent potential 
initiation sites for DNA replication, as previ- 
ously suggested [Bollum, 1975; Edenberg and 
Huberman, 1975; Hobom et al., 1979; Meijer et 
al., 19791, serving as the attachment site for 
initiator or other protein factors [Gierer, 1966; 
Hand, 1978; Muller and Fitch, 1982; Mizuuchi 
et al., 1982; Tschumper and Carbon, 1982; Hsu, 
1985; Bianchi, 1988; Elborough and West, 19881. 
Bell et al. [19911 took advantage of the specific- 
ity of the anti-cruciform DNA antibody to affin- 
ity-purify and clone DNA fragments from CV-1 
genomic DNA. Fragments isolated in this fash- 
ion were enriched in palindromic sequences. In 
addition, up to 50% of the clones from the cruci- 
form-DNA affinity-purified library were able to 
replicate autonomously upon transfection into 
mammalian cells. ors8, an early replicating CV-1 
DNA sequence with autonomous replicating ac- 
tivity [Frappier and Zannis-Hadjopoulos, 1987; 
Todd et al., 19951 (see above) was also recovered 
in this library. Other libraries were also pre- 
pared from human genital fibroblasts, embryo 
lung fibroblasts (WI-38) and colorectal cancer 
cells (SW48), by affinity purification with anti- 
cruciform antibody. These libraries were also 
shown to be enriched for autonomous replica- 
tion activity in assays both in vivo and in vitro 
[Nielsen et al., 19941. 

PROTEINS INTERACTING WITH CRUCIFORMS 
AND CRUCIFORM-LIKE STRUCTURES 

In order to critically evaluate the interaction 
of proteins with cruciform substrates, one must 
be conscious of the fact that cruciforms possess 
several structural elements, which may be shared 
also by other structures in DNA. These ele- 
ments include (1) single-strand DNA at the cru- 
ciform tips; (2) possible mismatches and/or 
bulges at  the stems due to imperfect intramolecu- 
lar complementarity of the IR; (3) intercrossing 
helices (crossovers); and (4) angles between the 
helices or helix-pairs of apparently defined de- 
gree, depending on the ionic strength (cf. above). 
For these reasons, cruciforms may interact with 
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proteins involved in the recognition of single- 
strand and/or perturbed DNA, intersecting heli- 
ces at nucleosome entry-exit sites, interwound 
supercoils, recombination intermediates (Holli- 
day junctions), and intrinsically curved or bent 
DNA. Therefore, interaction of several proteins 
with cruciforms studied in vitro, although valu- 
able for basic principles of molecular recogni- 
tion, may have limited significance for the pro- 
tein’s exact cellular function. 

DNA Crossovers 

DNA crossovers (crossing helices without ex- 
changing strands) occur in several instances, for 
example, at the site where DNA enters and exits 
a nucleosome, or at the intersection of two heli- 
ces in a plectonemic (interwound) supercoiled 
molecule. DNA crossovers, like cruciforms, ap- 
parently obey the same basic principles of DNA 
self-fitting [Timsit and Moras, 1991,19941, thus 
giving rise to similar structures with similar 
crossing angles and groove faces [von Kitzing et 
al., 1990; Lilley, 19921. Proteins, specifically 
binding to DNA crossovers, may therefore be 
able to interact with cruciforms or four-way 
junctions. For example, histones H1 and H5, 
which are implicated in tight packaging of chro- 
matin by interacting with the nucleosome linker 
regions, interact preferentially with DNA cross- 
overs [Krylov et al., 19933. It was found that H1 
could also bind specifically to a stable four-way 
DNAjunction Warga-Weisz et al., 19931. 

Another example are the eukaryotic topoisom- 
erases I and 11. These enzymes have been shown 
to interact preferentially with helix intersec- 
tions of superhelical molecules [Zechiedrich and 
Osheroff, 19901, a feature anticipated from their 
molecular action, which is relaxing positive and 
negative supercoils. In accordance, extruded cru- 
ciforms may be also recognized by topoisomer- 
ase I1 [Pognan and Paoletti, 19921. By contrast, 
neither prokaryotic topoisomerase I (w protein), 
which acts by recognizing single-stranded DNA 
[Kirkegaard and Wang, 19851, nor topoisomer- 
ase I1 (gyrase), which must introduce negative 
supercoils, was found to associate preferentially 
with DNA crossovers [Zechiedrich and Osheroff, 
1990, and refs. therein]. 

Holliday Junctions, Four-Way Junctions 

A structure most resembling a cruciform is 
the so-called Holliday junction [Holliday, 19641, 
which displays intersecting helix-pairs and recip- 
rocal strand exchange, but lacks the characteris- 

tic loops of a cruciform, a feature which may 
have implications for the structure and the inter- 
action with enzymes (see above). A Holliday 
junction is an intermediate in homologous gen- 
eral recombination and, consequently, several 
recombination enzymes, implicated in genera- 
tion, processing and resolution of a Holliday 
structure, may be also relevant for interaction 
with (and instability of) cruciform structures. 

In E. coli, the main pathway of general recom- 
bination is initiated by exonuclease V, encoded 
by the recBCD genes [reviewed by Kowalc- 
zykowski et al., 19941. Earlier reports suggested 
a function for recBCD not only in the generation 
of a recombination intermediate, but also in its 
resolution [Thaler and Stahl, 19881. In fact, 
recBCD is able to introduce a double-strand cut 
into a model four-way junction in vitro, provided 
that two ends are open [Taylor and Smith, 19921. 
However, no cleavage (and no interaction) takes 
place, when the ends are blocked, as in the case 
of a cruciform. This suggests that recBCD may 
be able to interact with and resolve four-way 
junctions in whose formation it participates, but 
precludes an involvement of recBCD in direct 
recognition of preformed cruciforms. Moreover, 
resolution of Holliday intermediates in vivo 
seems to be accomplished by different enzymes 
(see below). 

After the formation of the primary Holliday 
junction, strand transfer takes place, mediated 
by the products of the ruvA and ruvB genes 
[Iwasaki et al., 1992; Tsaneva et al., 1992; Par- 
sons et al., 1992; for reviews of the late recombi- 
nation steps, see West and Connoly, 1992; 
Kuzminow, 1993; West, 1994,1995; Shinagawa 
and Iwasaki, 19951. Apparently, RuvA is the 
protein specifically interacting with the pre- 
formed four-way junction [Iwasaki et al., 1992; 
Tsaneva et al., 1992; Parsons et al., 19921. Ac- 
cordingly, the RuvA-RuvB complex is able to 
recognize and promote reabsorption of a cruci- 
form on a superhelical plasmid (at the expense 
of ATP) [Shiba et al., 1991; Shinagawa et al., 
19911. RecG is a RuvA-RuvB substitute protein, 
also able to recognize four-way junctions and 
promote strand transfer [Lloyd and Sharples, 
1993a,bl. 

The resolution of Holliday junctions takes 
place through the action of resolvases. Although 
the interaction of the latter with cruciforms 
conceivably may not result in anything else other 
than cruciform deletion, these enzymes were 
the prototype of proteins binding to four-way 
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junctions, and their interaction with DNA has 
been investigated in great detail. Therefore, the 
results obtained with these systems may also be 
significant for protein-cruciform interactions. 

Recognition and resolution of Holliday junc- 
tions generated by all E. coli pathways of gen- 
eral recombination is performed by the RuvC 
resolvase [Iwasaki et al., 19911, a thoroughly 
studied enzyme. RuvC has a greater specificity 
for “true” recombination intermediates than 
the T4 endonuclease VII [Benson and West, 
19941 (see below) and, also in contrast to the 
latter, cleaves the continuous pair of crossing 
helices [Bennett and West, 19951. However, it 
requires a region of homology at the junction 
point [Iwasaki et al., 1991; Benson and West, 
19941. Upon binding, RuvC brings about a pro- 
found structural distortion of two of the four 
strands of the four-way junction revealed by 
hydroxyl radical footprinting [Bennett et al., 
19931 and unfolds it into a two-fold symmetric 
structure, different from those described for pro- 
tein-free junctions [Bennett and West, 19951. 
Surprisingly, no contacts to  the DNA backbone 
are evident; this may be explained by interaction 
of the enzyme, mainly with base pairs, in accor- 
dance with the sequence specificity of the cleav- 
age reaction [Bennett et al., 19931. The DNA- 
free crystal structure of RuvC has been resolved 
recently [Ariyoshi et al., 19941. Another E. coli 
protein, called Rus, shares with RuvC the ability 
to interact and endonucleolytically resolve four- 
way junctions [Sharples et al., 19941. 

Many other resolvases interacting with four- 
way junctions have been isolated from different 
sources and characterized in varying detail. The 
most prominent members are the debranching 
enzymes endonuclease VII, encoded by gene 49 
of bacteriophage T4 [Pottmeyer and Kemper, 
1992, and refs. therein], and endonuclease I, 
encoded by gene 3 of bacteriophage T7 [Parsons 
and West, 1990, and refs. therein]. Hydroxyl 
radical footprinting of T4 endonuclease VII com- 
plexed with a four-way junction revealed con- 
tacts with the backbone of two out of the four 
strands at the base of the junction, but no obvi- 
ous distortion of the DNA structure [Parsons et 
al., 19901. By contrast, with the same method all 
four strands were found to be contacted by T7 
endonuclease I, again without structural distor- 
tion [Parsons and West, .19901. This suggests 
that interaction may be simultaneously with all 
four junction elbows, or, alternatively, with a 
different pair of strands of each of two equally 

abundant stacking stereoisomers (cf. above). The 
specificity of T4 endonuclease VII, besides cleav- 
age of the exchanging strands of four-way junc- 
tions and cruciforms, was investigated and found 
to extend over a broad range of substrates with a 
clear dependence on local nucleotide sequence 
[Bhattacharyya et al., 1991; Pottmeyer and Kem- 
per, 19921. Similarly, T7 endonuclease I cleaves 
a multitude of structures, has an even 100-fold 
higher affinity for single-strand DNA and shows 
a sequence-influenced bias in cleavage [refs. in 
Parsons and West, 19901. The relaxed specificity 
of these enzymes is in accordance with their 
high toxicity for the cell when induced from 
expression plasmids [Panayotatos and Fon- 
taine, 1987; Kosak and Kemper, 19901 and ad- 
monishes to cautiously interpret results ob- 
tained with them as probes for cruciform 
formation (cf. above). 

Four-way junction- andl or cruciform-recogniz- 
ing proteins with the capacity to resolve their 
substrate by double-strand endonucleolytic 
cleavage were also isolated from eukaryotic 
sources. They include the CCE-1 (mgt-1) X- 
solvase from yeast mitochondria [Kleff et al., 
1992; Ezekiel and Zassenhaus, 19931, several 
yeast proteins [Symington and Kolodner, 1985; 
Symington et al., 1985; Evans and Kolodner, 
1987, 1988; West and Korner, 1985; West et al., 
1987; Jensch et al., 19891, calf thymus enzymes 
[Elborough and West, 1990; Hyde et al., 19941, 
and resolvases from hamster cells [Hyde et al., 
19941, mouse cells [Hyde et al., 1994; Solaro et 
al., 19951, HeLa cells [Waldman and Liskay, 
19881, and human placenta [Jeyaseelan and 
Shanmugam, 19881. Additionally, proteins inter- 
acting specifically with four- and three-way junc- 
tions and/or cruciforms, of which no endonucle- 
ase activity was reported, were found in Ustilag 
maydis [Kotani et al., 19931, and human lympho- 
blasts [Elborough and West, 19881. Similarly, 
human nuclear poly(ADP-ribosy1)transferase is 
also likely to interact with cruciforms in vitro 
and in vivo [Sastri and Kun, 1990; Oei et al., 
19941. 

CurvedIBent DNA 

Perhaps the most dominant feature of a cruci- 
form for interaction with proteins, over a particu- 
lar sequence, homology, interstrand complemen- 
tarity, single strand regions, crossing helices 
and strand exchange, is the presence of defined 
angles. This became apparent by the elegant 
experiments of Bhattacharyya et al. [19911, who 
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demonstrated that several four-way junction- 
recognizing enzymes, such as T4 endonuclease 
VII, a yeast and a thymus resolvase (cf. above), 
are able to recognize (and cleave in the presence 
of Mg2+), not only their classic substrate, but 
also three-way junctions, nonbranched bulged 
duplexes, and intrinsically curved DNA, pro- 
vided that these substrates present an angle of - 120”. This suggests that, at least some four- 
way junction interacting proteins, actually mea- 
sure angles. However, a curved DNA-RNA hy- 
brid strand was not a substrate, indicating that 
the helical parameters of a B-form DNA are also 
requisite for interaction [Bhattacharyya et al., 
19911. 

The initiator protein RepC recognizes IR-I11 
[Koepsel et al., 19861 and stabilizes the cruci- 
form at the pT181 origin by simultaneous inter- 
action with one stem-loop extruded from the 
adjacent IR-I1 [Noirot et al., 1990; Wang et al., 
19931. The pT181 origin was shown to contain a 
DNA curvature, which is bent further by RepC 
binding to the linear origin [Koepsel and Khan, 
19861, indicating that bent DNA is a major deter- 
minant for stable interaction. RepC, although 
clearly sequence specific, may therefore be an- 
other example of a cruciform binding protein, 
whose stable interaction relies mainly on fitting 
to the “elbow” formed by two cruciform helices. 

A large eukaryotic, nonendonuclease protein 
family, known to interact with cruciforms, are 
the HMG-box proteins and their prokaryotic 
counterpart HU [Bianchi et al., 1992; Ner et al., 
19941: The abundant HMGl and HMG2 proto- 
types (-3-5 x lo4  per nucleus), have been 
shown to interact preferentially with many struc- 
tured DNAs, including cruciforms, negative su- 
percoils, crossovers, and cis-platinated DNA [Ner 
et al., 1994, and refs. therein]; for a division of 
the HMG proteins into three subtypes see Fer- 
rari et al. [19921. An approx. 80” bent, L-shaped 
HMG-box domain [Weir et al., 1993; Read et al., 
1993; Jones et al., 1994; King and Weiss, 1993; 
Werner et al., 19951 either interacts with the 
minor grove of linear DNA bending it [Ferrari et 
al., 1992; Pi1 et al., 1993; King and Weiss, 1993; 
Haqq et al., 1994; Werner et al., 1995; Churchill 
et al., 19951, or favors binding to DNA angles 
[Pi1 and Lippard, 1992; Bruhn et al., 1992; Pi1 et 
al., 1993; Churchill et al., 19951. The latter is 
probably the cause for the particular capability 
of HMG-box proteins to interact with cruci- 
forms [Bianchi et al., 1989; Peters et al., 19951. 
However, HMGl has been reported to not be 

able to protect a four-way junction from T4 
endonuclease VII digestion [Bhattacharyya et 
al., 19911. This may be due to a different associa- 
tion of HMGl with its substrate, than that of T4 
endonuclease VII [Bhattacharyya et al., 19911. 
No footprints of a HMG-box protein on a four- 
way junction have been reported yet, and the 
actual protein contacts on DNA are therefore 
unknown. 

Human Cruciform Binding Protein 

Based on the hypothesis that there exist spe- 
cific cellular recognition proteins for DNA cruci- 
forms, we identified and partially characterized 
a novel DNA-binding activity from HeLa cell 
nuclei [Pearson et al., 1994133. The bindingactiv- 
ity was enriched from HeLa cells and appears as 
a 66-kDa cruciform binding protein (CBP). It is 
specific for cruciform containing molecules, ap- 
pears to require stem length symmetry and is 
void of nuclease activity. Cruciform-binding is 
apparently not biased by the particular se- 
quence. CBP does not recognize linear dsDNA, 
or ssDNA [Pearson et al., 1994bl. It does, how- 
ever, show some affinity to Y-shaped molecules. 
Moreover, by a series of criteria [Pearson et al., 
1994133, it is different from the abundant HMGl 
protein. Thus, CBP is a novel, structure-depen- 
dent DNA binding activity. Hydroxyl radical foot- 
printing studies demonstrated that the protein 
binds at the base of four-way junctions, recogniz- 
ing the (asymmetric) arrangement of the helices 
and contacting the DNA backbone of three 
strands at both groove surfaces; binding induces 
structural alterations in the DNA substrate 
[Pearson et al., 19951. Protein-induced struc- 
tural alteration in DNA is common among repli- 
cation proteins such as dnaA of E. coli [Bramhill 
and Kornberg, 19881, bacteriophage lambda 0 
protein [Schnos et al., 19881, UL9 of herpes 
simplex virus [Koff et al., 19911, and T antigen 
of SV40 virus [Borowiec and Hurwitz, 19881. 
With respect to these structural aspects, CBP 
interacts with a four-way junction in a radically 
different manner from other proteins studied in 
comparable detail [Pearson et al., 1994bl (cf. 
above). Interestingly, the monoclonal anti-cruci- 
form antibody can compete against CBP for 
binding to cruciform DNAs (unpublished data). 
Recently, using hydroxyl radical footprinting, 
the antibody binding site was mapped to the 
cruciform’s four-way junction [Steinmetzer et 
al., 19951. This indicates that the site(s) recog- 
nized by the antibody are similar to those recog- 
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nized by CBP. This may be biologically signifi- 
cant, as the antibody is known to enhance 
replication in the cell [Zannis-Hadjopoulos et 
al., 19881. 

Recent studies indicate that CBP activity is 
regulated with the cell cycle and is maximal in 
late G1 phase (in preparation). Cells in late Gll 
early S phase are enriched for CBP activity, 
while Go and G1 cells are not. This pattern of 
regulation is consistent with the pattern of cru- 
ciform formation [Ward et al., 19901 and is 
similar to that observed for many eukaryotic 
replication proteins, including c-myc protein 
[Studzinski, 19891 and others [reviewed in 
Huberman, 1990; and Norbury and Nurse, 
19921. It is interesting that CBP activity may be 
regulated with the cell cycle and that this activ- 
ity is maximal at the same stage in the cell cycle 
(GIIS) at which the number of observed cruci- 
forms is maximal [Ward et al., 19901. Thus, 
cruciform formation may be linked to the appear- 
ance of CBP activity. 

CONCLUSIONS 

Current models of eukaryotic replicon activa- 
tion [Held and Heintz, 1992; Benbow et al., 
1992; Fangman and Brewer, 1991; Hamlin, 
1992; DePamphilis, 1993; Stillman, 19931 postu- 
late that different classes of replication origins 
are successively activated throughout the S 
phase. Not every IR with dyad symmetry in 
mammalian cells is associated with an origin of 
replication. It is clear that formation of cruci- 
forms is important for other functions such as 
gene expression in both prokaryotes [Horwitz 
and Loeb, 1988; Horwitz, 1989; Waga et al., 
1990; Dayn et al., 19921 and eukaryotes [Green- 
berg et al., 1987; Martinez-Arias et al., 1984; 
Shuster et al., 19861. Furthermore, not all mam- 
malian origins may contain IRs or require cruci- 
form formation for functionality. However, it is 
likely that the regulation of initiation of some 
replicating sequences does require an IR, and 
possibly cruciform formation, as both AT-rich 
tracts and IRs are present on all functional ors 
sequences, as well as other isolated early replicat- 
ingmammalian DNAs [Triboli et al., 1987; Razin 
et al., 1986; Anachkova and Hamlin, 1989; Leu 
et al., 1989; Dimitrova et al., 19931. 

The possibility that certain IRs may act as 
triggering signals for the initiation of replication 
is based on numerous previous studies [Zannis- 
Hadjopoulos et al., 1984, 1988; Ward et al., 
1990,1991; Bell et al., 1991; Nielsen et al., 1994; 

Todd et al., 19951. As a result of those studies, 
we suggested that transiently forming cruci- 
forms would be ideally placed at replication ori- 
gin sites, since such sites must be activated only 
once per cell cycle in a normal cell. Temporal 
regulation of cruciform formation at these sites 
could potentially be achieved by cruciform bind- 
ing proteins. 

Cruciform-specific proteins may stabilize cru- 
ciform structures, or promote cruciform extru- 
sion or their reabsorption by branch migration, 
as this process is slow [Johnson and Symington, 
19931 and likely to require an energy source 
[Robinson and Seeman, 19871. A protein that 
could promote branch migration of the four 
strands at a cruciform junction could either 
force cruciform reabsorption or catalyse the un- 
winding of the two strands. Unwinding would be 
accomplished following the intrastrand base pair- 
ing of the complete IR; as there exists no homol- 
ogy in the regions flanking the IR, further branch 
migration would render these regions single- 
stranded. The unwound regions would then be 
available for the entry of the replicationltran- 
scriptionlrecombination factors. We propose that 
cruciform extrusion would cause nucleosome 
phasing, rendering itself and the DNA proximal 
to it nucleosome-free, and thus available for 
other replication initiation factors. In addition, 
we suggest that cruciformation may induce flex- 
ural alterations in proximal DNA flanking the 
junction. These alterations could affect the bind- 
ing of other factors (or vice versa), and may 
facilitate unwinding of the duplex for transcrip- 
tion or replication priming. It may very well be 
that the site of initiation is not the cruciform; 
however, initiation would be relatively close. 
Suitable models, like the ors sequences, should 
enable the study of cruciform-facilitated initia- 
tion of eukaryotic DNA replication. 
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